
PalmPilot: Drone Control using Live Hand Signal Detection

Chris Kay
Stanford University
kayro@stanford.edu

Matt Mahowald
Stanford University

mcm2018@stanford.edu

Carlos Hernandez
Stanford University

carlosh6@stanford.edu

Abstract

We present a real-time hand gesture recognition system
for intuitive drone control using computer vision and deep
learning techniques. Our system captures hand gestures
via camera input, extracts 3D hand landmarks using Me-
diaPipe, and classifies gestures using neural networks to
generate control signals for autonomous drone navigation.
We evaluate multiple deep learning architectures includ-
ing MLPs, RNNs (GRU, LSTM), Temporal Convolutional
Networks (TCN), and Transformers on a custom gesture
dataset of 11 distinct control commands. Our best model,
an LSTM network, achieves 92.74% accuracy with 93.56%
macro F1-score, demonstrating robust gesture recognition
capabilities. We successfully implemented a complete end-
to-end system using a Crazyflie 2.1+ nano quadcopter and
Crazyradio 2.0 communication that translates hand ges-
tures to radio control signals, enabling intuitive drone pi-
loting through natural hand movements. While our sys-
tem shows promising results in controlled environments, we
identify GPS feedback limitations as a key challenge for ro-
bust outdoor flight performance, highlighting critical hard-
ware integration requirements for practical deployment.

1. Introduction
Drone control traditionally relies on manual remote con-

trollers or complex interfaces that require significant train-
ing and expertise. As unmanned aerial vehicles become
increasingly prevalent in applications ranging from aerial
photography to search and rescue operations, there is grow-
ing demand for more intuitive human-computer interaction
methods. Hand gesture recognition presents a natural and
accessible approach to drone control, enabling users to pilot
drones through familiar hand movements without the need
for specialized hardware controllers.

The challenge of gesture-based drone control encom-
passes several technical domains: real-time computer vi-
sion for gesture detection, robust classification under vary-
ing lighting and background conditions, and reliable trans-
lation of recognized gestures into precise flight commands.

Recent advances in deep learning, particularly in computer
vision and sequence modeling, provide powerful tools to
address these challenges, but their comparative effective-
ness for this specific application domain remains underex-
plored.

Our approach leverages MediaPipe’s hand tracking ca-
pabilities to extract 3D landmark coordinates from cam-
era input, creating a rich representation of hand pose and
movement. The input to our system is a continuous video
stream from a standard camera, from which we extract 21
hand landmarks with 3D coordinates (63 features total). We
then employ various neural network architectures including
Multi-Layer Perceptrons (MLPs), Recurrent Neural Net-
works (RNNs), Temporal Convolutional Networks (TCNs),
and Transformers to classify these features into 11 distinct
gesture commands. The output is a classified gesture label
that maps to specific drone control signals transmitted via
radio communication to a Crazyflie 2.1+ platform.

This work makes several contributions: (1) a compre-
hensive evaluation of deep learning architectures for hand
gesture recognition in drone control applications, (2) a com-
plete end-to-end system implementation from gesture cap-
ture to drone control, (3) analysis of temporal versus frame-
based approaches for gesture classification, and (4) prac-
tical insights into the challenges of real-world deployment
including GPS dependency issues and hardware integration
requirements.

2. Related Work
Hand gesture recognition has been extensively studied

in computer vision and human-computer interaction. Early
approaches relied on traditional computer vision techniques
such as background subtraction, contour detection, and
handcrafted features [14]. However, these methods suffered
from fundamental limitations including poor robustness to
lighting variations, background clutter sensitivity, and in-
ability to handle natural gesture variability, making them
unsuitable for real-world applications.

Deep Learning for Gesture Recognition: The ad-
vent of deep learning revolutionized gesture recognition
accuracy and robustness. Convolutional Neural Networks

1



(CNNs) have shown exceptional performance in image-
based gesture classification [10]. 3D CNNs extend this
approach to video sequences, capturing temporal dynam-
ics crucial for gesture understanding [4]. However, these
approaches typically require extensive computational re-
sources (GPU acceleration, large memory footprints) and
massive datasets, limiting their deployment on resource-
constrained systems or embedded platforms.

Landmark-Based Approaches: MediaPipe and simi-
lar frameworks have popularized landmark-based gesture
recognition, providing robust hand tracking in real-time [9].
This approach reduces the dimensionality of the problem
while maintaining essential spatial relationships. Several
works have demonstrated effective gesture classification us-
ing hand landmarks with traditional machine learning ap-
proaches [11]. However, most existing landmark-based sys-
tems focus on static gesture recognition and lack compre-
hensive evaluation of modern deep learning architectures
for temporal gesture sequences.

Temporal Modeling: Gesture recognition inherently in-
volves temporal sequences, making RNNs natural candi-
dates for this task. Long Short-Term Memory (LSTM) net-
works have shown success in sequence modeling for ges-
ture recognition [8]. Gated Recurrent Units (GRUs) offer a
simpler alternative with competitive performance [6]. More
recently, Temporal Convolutional Networks (TCNs) have
emerged as powerful alternatives to RNNs for sequence
modeling [2]. Despite these advances, existing work lacks
systematic comparison of temporal architectures specifi-
cally for gesture-based control applications, where real-
time processing constraints and accuracy requirements dif-
fer significantly from general action recognition tasks.

Drone Control Applications: Several researchers have
explored gesture-based drone control. Cauchard et al.
demonstrated basic gesture commands for drone naviga-
tion [5]. However, most existing work suffers from critical
limitations: dependence on specialized hardware (Kinect
sensors, leap motion controllers), operation only in con-
trolled indoor environments, or evaluation limited to sim-
ple hover/move commands without comprehensive gesture
vocabularies.

Transformer Architectures: The success of Trans-
formers in natural language processing has led to their
adoption in computer vision tasks. Vision Transformers
(ViTs) have shown promising results in image classifica-
tion [7], while Transformer variants have been applied to
action recognition in videos [3]. However, their compu-
tational overhead and data requirements present significant
challenges for real-time gesture recognition applications.

Our work addresses these limitations by providing a
comprehensive evaluation of modern architectures using
standard camera hardware, evaluating real-time perfor-
mance constraints, and implementing complete end-to-end

system integration with actual drone hardware.

3. Methods

3.1. Problem Formulation

We formulate gesture recognition as a supervised clas-
sification problem. For frame-based models, each input
sample x ∈ R63 represents the flattened 3D coordinates
of 21 hand landmarks. For temporal models, we process
sequences X = [x1,x2, . . . ,xT ] ∈ RT×63 where T is the
sequence length. The output is a probability distribution
over C = 11 gesture classes:

y = softmax(f(X; θ)) ∈ RC (1)

where f(·; θ) represents our neural network with param-
eters θ, and yi = P (class i|X).

3.2. Hand Landmark Extraction

We utilize Google’s MediaPipe framework for robust
hand detection and landmark extraction. MediaPipe identi-
fies 21 key points on each hand, including fingertips, joints,
and the wrist, providing 3D coordinates (x, y, z) for each
landmark. This results in a 63-dimensional feature vector
per frame, representing the complete hand pose.

The MediaPipe pipeline first detects hands in the input
image using a palm detection model, then estimates 21 3D
landmarks using a hand landmark model. The landmarks
are normalized to the hand’s bounding box, providing some
invariance to hand size and distance from the camera.

3.3. Neural Network Architectures

Multi-Layer Perceptrons (MLPs): We implement two
MLP variants as baselines. The forward pass for a single
frame is computed as:

h1 = ReLU(W1x+ b1), (2)
h2 = ReLU(W2h1 + b2), (3)

y = W3h2 + b3 (4)

where Wi and bi are the weight matrices and
bias vectors for layer i. Our MLP Small uses di-
mensions 63→128→64→11, while MLP Large uses
63→256→128→11. Both architectures operate on individ-
ual frames without temporal context, making them compu-
tationally efficient but unable to capture gesture dynamics.

Long Short-Term Memory (LSTM): To capture tem-
poral dependencies in gesture sequences, we implement
bidirectional LSTM networks. The LSTM cell updates are
governed by:

2



ft = σ(Wf [ht−1,xt] + bf ) (5)
it = σ(Wi[ht−1,xt] + bi) (6)
ot = σ(Wo[ht−1,xt] + bo) (7)
ct = ft ⊙ ct−1 + it ⊙ tanh(Wc[ht−1,xt] + bc) (8)
ht = ot ⊙ tanh(ct) (9)

where ft, it, and ot are the forget, input, and output
gates respectively, ct is the cell state, and σ denotes the sig-
moid function. The bidirectional architecture processes se-
quences in both forward and backward directions, capturing
long-range dependencies crucial for distinguishing similar
gestures.

Gated Recurrent Units (GRU): We also evaluate GRU
networks as a simpler alternative to LSTMs. GRUs com-
bine the forget and input gates into a single update gate, re-
ducing computational complexity while maintaining com-
petitive performance. The GRU updates are computed as:

rt = σ(Wr[ht−1,xt] + br) (10)
zt = σ(Wz[ht−1,xt] + bz) (11)

h̃t = tanh(Wh[rt ⊙ ht−1,xt] + bh) (12)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (13)

where rt is the reset gate, zt is the update gate, and
h̃t is the candidate hidden state. The simplified gating
mechanism reduces the number of parameters compared to
LSTMs while effectively modeling temporal dependencies
in gesture sequences.

Temporal Convolutional Networks (TCN): We im-
plement TCNs with dilated convolutions to capture long-
range temporal dependencies while maintaining computa-
tional efficiency. The dilated convolution operation is de-
fined as:

(X ∗d W)t =

K−1∑
k=0

Wk ·Xt−d·k (14)

where d is the dilation factor, K is the kernel size, and
W is the convolution kernel. The effective receptive field
grows exponentially with dilation, enabling the network
to capture dependencies across the entire sequence length.
Residual connections are applied as:

Y = Activation(BatchNorm(X ∗d W)) +X (15)

This architecture uses residual connections and layer
normalization to stabilize training while avoiding the van-
ishing gradient problem common in deep temporal net-
works.

Transformer: We adapt the Transformer architecture
for gesture sequences using positional encoding and multi-
head self-attention. The core self-attention mechanism
computes:

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V (16)

MultiHead(Q,K,V) = Concat(head1, . . . , headh)W
O

(17)

where headi = Attention(QWQ
i ,KWK

i ,VWV
i ) and

dk is the dimension of the key vectors. Positional encoding
is added to the input embeddings:

PE(pos,2i) = sin
( pos

100002i/dmodel

)
(18)

PE(pos,2i+1) = cos
( pos

100002i/dmodel

)
(19)

where pos is the position in the sequence and i is the
dimension index. The model includes 4 layers with 8 atten-
tion heads and 128-dimensional embeddings, allowing the
network to attend to relevant parts of the gesture sequence
regardless of their temporal distance.

Note on Transformer Performance: Despite their suc-
cess in many sequence modeling tasks, our empirical re-
sults (Section 5) reveal that Transformers underperform
for gesture recognition, achieving only 87.71% accuracy
compared to 92.74% for LSTMs. This performance gap
likely stems from the limited dataset size relative to Trans-
former parameter count (802K parameters) and the struc-
tured, short-duration nature of gesture sequences that may
not fully benefit from the flexible attention mechanisms that
excel in longer, more complex sequences typical in NLP ap-
plications.

3.4. Training Objective

All models are trained using the standard cross-entropy
loss for multi-class classification:

L = − 1

N

N∑
i=1

C∑
c=1

yi,c log(ŷi,c) (20)

where N is the batch size, yi,c is the true label (one-hot
encoded), and ŷi,c is the predicted probability for class c
on sample i. We employ the Adam optimizer with learning
rate scheduling and early stopping based on validation loss
to prevent overfitting.

3.5. Sequence Processing

For temporal models, we create sequences of length 16
from the landmark data using a sliding window approach
with stride 8. This captures sufficient temporal context

3



while maintaining data efficiency. The sequence creation
maintains class consistency within each sequence to avoid
label noise.

3.6. Training Procedure

All models are trained using the Adam optimizer with
learning rate scheduling. We employ early stopping with
patience of 100 epochs and validation monitoring every 5
epochs. For temporal models, we add learning rate schedul-
ing using ReduceLROnPlateau with patience of 20 epochs
and reduction factor of 0.5, which proved crucial for TCN
convergence.

4. Dataset and Features

4.1. Dataset Collection Methodology

We developed a gesture dataset specifically tailored for
drone control applications. The data collection process was
designed to capture natural hand movements that would
be intuitive for pilots while maintaining sufficient discrim-
inability for machine learning classification.

Recording Setup: Data was collected using standard
webcam input at 30 FPS with 640×480 resolution. Record-
ing sessions were conducted in varied lighting conditions
(natural daylight, artificial indoor lighting, and mixed light-
ing scenarios) and against different backgrounds (plain
walls, office environments, outdoor settings) to improve
model robustness and generalization.

Gesture Design: Our gesture vocabulary consists of 11
distinct commands specifically chosen for intuitive drone
piloting:

• Directional Navigation: Forward (finger pointed for-
ward), Backward (thumb pointed backward), Left (fin-
ger pointing left), Right (finger pointing right), Up (fin-
ger pointing up), Down (finger pointing down)

• Rotational Control: Rotate Left (circular motion
counterclockwise), Rotate Right (circular motion
clockwise)

• Flight Control: Takeoff (open palm spread fin-
gers upward), Land (flat palm moving downward),
Stop/Hover (closed fist)

Data Collection Protocol: Each gesture was performed
by multiple participants across different sessions to capture
natural variation in hand size, speed, and execution style.
Participants were instructed to hold each gesture for 2-3
seconds and repeat each command 15-20 times per session.
This approach ensures temporal consistency while captur-
ing the natural variability in human gesture execution.

Figure 1. Example gesture frames from our dataset showing the 7
static control commands. Each gesture maintains distinctive hand
pose characteristics while allowing for natural execution variation.

Gesture Class Samples Percentage

Forward 8340 9.4%
Backward 7980 9.0%
Left 8470 9.6%
Right 8230 9.3%
Up 7560 8.5%
Down 7890 8.9%
Rotate Left 8120 9.2%
Rotate Right 7980 9.0%
Takeoff 7430 8.4%
Land 7780 8.8%
Stop/Hover 8670 9.8%

Total 88,470 100%
Table 1. Class distribution in our gesture dataset. The dataset
maintains good balance across all classes with no class represent-
ing more than 10% or less than 8% of total samples.

4.2. Dataset Statistics and Class Balance

Our final dataset consists of 88,470 total samples dis-
tributed across 11 gesture classes. Table 1 shows the de-
tailed class distribution and sample counts.

The dataset maintains excellent class balance with stan-
dard deviation of only 0.5% across classes, eliminating the
need for specialized sampling techniques during training.

4.3. Feature Engineering and Representations

Landmark Extraction: We utilize Google’s MediaPipe
Hand solution for robust 3D hand landmark detection. Me-
diaPipe provides 21 anatomically meaningful landmarks in-
cluding fingertips, joint positions, and wrist location, each
with (x, y, z) coordinates normalized to the hand’s bound-
ing box.

Coordinate Normalization: Raw landmark coordinates
undergo several preprocessing steps:

1. Bounding Box Normalization: All coordinates are
normalized relative to the hand’s bounding box, pro-
viding translation and scale invariance.

4



2. Depth Normalization: Z-coordinates are normalized
relative to the wrist position to account for varying
hand distances from camera.

3. Missing Frame Handling: When hand detection
fails, we employ linear interpolation using neighbor-
ing frames or duplicate the last valid frame for short
gaps.

Alternative Feature Analysis: We explored joint an-
gle representations as biomechanically-motivated features.
Joint angles between finger segments theoretically provide
invariance to hand size and camera position. However, em-
pirical evaluation revealed that raw landmark coordinates
(63 dimensions) significantly outperform joint angles (20
dimensions) with 92.74% vs 76.54% accuracy for LSTM
models. This suggests that spatial relationships preserved
in landmark coordinates contain crucial discriminative in-
formation lost in angular transformations.

4.4. Data Augmentation Strategies

To improve model robustness and generalization, we im-
plement several augmentation techniques:

Geometric Augmentations:

• Scaling: Uniform scaling of hand size (0.9×-1.1×)

• Translation: Small random translations within nor-
malized coordinate space

Temporal Augmentations: For sequence-based mod-
els, we employ:

• Time Warping: Non-linear time scaling to simulate
varying gesture speeds

• Frame Dropout: Random removal of frames to simu-
late detection failures

• Sequence Shuffling: Slight reordering of frames
within gesture sequences

Noise Injection: Gaussian noise addition to landmark
coordinates (σ = 0.01) simulates detection uncertainty and
improves robustness to tracking errors.

5. Experiments and Results
5.1. Experimental Configuration

Hardware Setup: Figure 2 shows the complete hard-
ware components used in our gesture-controlled drone sys-
tem. The Crazyflie 2.1+ provides a lightweight, pro-
grammable quadcopter platform ideal for indoor flight test-
ing, while the Crazyradio 2.0 enables reliable 2.4GHz com-
munication between our gesture recognition system and the
drone.

Figure 2. Hardware components of the gesture-controlled drone
system. Left: Crazyradio 2.0 USB dongle for 2.4GHz commu-
nication. Right: Crazyflie 2.1+ nano quadcopter with expansion
capabilities.

Drone Specifications: The Crazyflie 2.1+ features a 27-
gram form factor with onboard IMU, barometer, and expan-
sion capabilities. Its open-source firmware allows direct in-
tegration with our gesture recognition pipeline through the
Crazyradio 2.0’s Python API.

Software Setup: All experiments were conducted on a
standard desktop computer with Intel i7-8700K CPU and
16GB RAM.

Training Hyperparameters: We employed extensive
hyperparameter tuning using 5-fold cross-validation. Key
parameters include: batch sizes of 16-64 (optimized per
model), learning rates of 1e-4 to 1e-2 with ReduceL-
ROnPlateau scheduling, early stopping patience of 50-100
epochs, and L2 regularization coefficients of 1e-4 to 1e-5.

Evaluation Metrics: Primary metrics include accuracy
and macro F1-score for balanced class evaluation. Addi-
tional metrics comprise per-class precision/recall, top-k ac-
curacy (k=2,3), confusion matrices, and computational ef-
ficiency measures including parameter count, training time,
and inference latency.

5.2. Comprehensive Performance Analysis

Table 2 presents comprehensive results across all evalu-
ated architectures with computational efficiency metrics.

5.3. Training Dynamics and Convergence Analysis

The training behavior of different architectures reveals
important insights into their optimization characteristics
and convergence properties.

LSTM Training Dynamics: Figure 3 demonstrates

5



Model Accuracy Macro F1 Top-2 Acc Top-3 Acc Parameters Train Time Inference
(%) (%) (%) (%) (min) (ms)

MLP Small 88.22 82.87 93.45 96.12 17,163 12.3 0.8
MLP Large 91.82 90.68 95.21 97.44 50,699 18.7 1.2
GRU 91.06 92.15 96.33 98.01 448,011 67.2 3.4
LSTM 92.74 93.56 97.77 98.89 596,235 82.5 4.1
TCN 88.27 89.58 93.85 96.78 62,731 156.8 2.1
Transformer 87.71 79.39 92.15 95.23 802,955 124.3 5.8

Table 2. Comprehensive model comparison including computational efficiency metrics. LSTM achieves the best accuracy-efficiency trade-
off, while MLP Large provides excellent efficiency for simpler applications.

Figure 3. LSTM training dynamics showing clear overfitting be-
havior. While training accuracy reaches 100% and training loss
approaches zero, validation metrics plateau around epoch 40-50,
indicating optimal early stopping point.

classic overfitting behavior in the LSTM model. Training
accuracy reaches 100% while validation accuracy plateaus
at approximately 92% around epoch 40-50. The divergence
between training loss (approaching zero) and validation loss
(increasing after epoch 40) indicates that early stopping
around epoch 50 would have been optimal for generaliza-
tion.

TCN Training Characteristics: In contrast, Figure 4
reveals fundamentally different training dynamics for the
TCN architecture. While exhibiting less classic overfitting
(validation loss stabilizes rather than increasing), the TCN
demonstrates significant training instability with highly
volatile validation curves.

Architecture Comparison: The contrasting training be-
haviors explain performance differences between architec-
tures. LSTM’s smooth convergence to a stable optimum
(92.74% accuracy) versus TCN’s erratic optimization path
(final 88.27% accuracy) demonstrates the importance of

Figure 4. TCN training dynamics showing less overfitting but
greater training instability. Validation metrics fluctuate signifi-
cantly throughout training, suggesting hyperparameter sensitivity
and optimization challenges.

architecture-specific optimization strategies. The TCN’s
training volatility suggests it may benefit from different
learning rate schedules, batch sizes, or regularization ap-
proaches.

5.4. Per-Class Performance Breakdown

Figure 5 shows detailed per-class performance analysis
for our best models. The LSTM model achieves above 90%
F1-score on 9 out of 11 classes, with most classification
errors occurring between semantically similar gestures.

High-Performing Classes: Stop/Hover (97.8% F1),
Takeoff (96.5% F1), and Land (95.9% F1) achieve the high-
est performance due to their distinctive hand poses that dif-
fer significantly from directional gestures.

Challenging Classes: Left vs Rotate Left (confusion
rate: 8.3%) and Forward vs Up (confusion rate: 6.1%) rep-
resent the most frequent classification errors. These con-
fusions are semantically reasonable as the gestures share

6



Figure 5. Detailed per-class performance analysis for LSTM
model. Most gestures achieve 90% F1-score, with challenges pri-
marily in distinguishing similar directional movements (Left vs
Rotate Left, Forward vs Up).

Figure 6. Model efficiency analysis: accuracy vs parameter count.
The plot reveals MLP Large as the efficiency champion and LSTM
as the accuracy leader, with Transformer showing poor parameter
efficiency despite high complexity.

similar hand orientations with subtle differences in finger
positioning or movement direction.

5.5. Computational Efficiency Analysis

Parameter Efficiency: Figure 6 presents the accuracy-
parameter trade-off across all models. MLP Large pro-
vides exceptional efficiency with 91.82% accuracy using
only 50K parameters, while LSTM achieves the best ab-
solute performance with 12× more parameters.

Training Efficiency: MLPs converge significantly faster
(15-20 minutes) compared to temporal models (60-180
minutes). TCN requires the longest training time due to
hyperparameter sensitivity and convergence challenges.

Inference Performance: Real-time inference capabili-
ties vary significantly across architectures:

• MLPs: 0.8-1.2ms per frame, enabling real-time pro-
cessing at above 800 FPS

• RNNs: 3.4-4.1ms per sequence, supporting 30 FPS

Figure 7. Live gesture recognition system in operation. The in-
terface shows real-time hand landmark detection (white overlay),
gesture classification (”takeoff”), and generated drone commands
with flight parameters. This demonstrates the complete end-to-end
pipeline from camera input to drone control signals.

real-time operation

• TCN: 2.1ms per sequence, good balance of speed and
temporal modeling

• Transformer: 5.8ms per sequence, limiting real-time
applications

5.6. Deployment Challenges and Lessons Learned

Hardware Integration Issues: While our gesture
recognition system performed excellently in controlled en-
vironments, practical deployment revealed critical hardware
dependencies. The absence of GPS feedback hardware sig-
nificantly impacted flight stability, causing unpredictable
drift and eventual crashes during extended flight sessions.
This highlights the importance of considering complete sys-
tem integration in autonomous control applications.

6. Conclusion and Future Work

This work presents a comprehensive evaluation of deep
learning approaches for hand gesture recognition in drone
control applications. Our LSTM-based system achieves
92.74% accuracy on a custom 11-class gesture dataset,
demonstrating the feasibility of intuitive gesture-based
drone control.

Key Contributions:

7



• Comprehensive comparison of modern deep learning
architectures for gesture recognition

• Successful implementation of complete end-to-end
gesture-to-flight system

• Practical insights into deployment challenges and
hardware requirements

• Analysis of computational constraints and real-time
performance trade-offs

Algorithm Performance Ranking: LSTM emerged as
the best model, followed by MLP Large as the efficiency
champion. The superior performance of temporal mod-
els (LSTM, GRU) over frame-based approaches (MLPs)
confirms the importance of sequence modeling for gesture
recognition.

Real-World Integration Challenges and Solutions:
Our deployment experience revealed critical technical chal-
lenges that future systems must address:

• GPS/IMU Sensor Fusion: Implementing Extended
Kalman Filter (EKF) or Particle Filter approaches to
combine gesture commands with onboard sensor data
for drift correction and stability enhancement

• Optical Flow Integration: Utilizing computer vision-
based velocity estimation to provide position feedback
when GPS is unavailable, particularly for indoor appli-
cations

• Adaptive Control Systems: Developing gesture
recognition confidence thresholds that automatically
switch between manual and autonomous control
modes based on detection reliability

• Fail-safe Mechanisms: Implementing redundant con-
trol pathways and emergency landing protocols trig-
gered by communication loss or gesture recognition
failures

Future Work: Given additional time and resources, we
would explore:

• Hardware Integration: Implementing proper GPS
feedback systems and sensor fusion algorithms for sta-
ble outdoor flight

• Dataset Expansion: Collecting larger, more diverse
gesture datasets across multiple users, age groups, and
environmental conditions to improve generalization

• Real-time Optimization: Model compression, quan-
tization, and edge deployment for mobile and embed-
ded platforms

• Advanced Architectures: Exploring newer sequence
models and attention mechanisms specifically de-
signed for action recognition

• Multi-modal Integration: Combining gesture recog-
nition with voice commands and eye tracking for more
robust control interfaces

The promising results demonstrate that gesture-based
drone control is not only feasible but can achieve high
accuracy with current deep learning techniques. With
proper hardware integration, expanded training data, and ro-
bust fail-safe mechanisms, such systems could significantly
lower the barrier to drone operation for non-expert users
while maintaining safety and reliability standards required
for practical deployment.

7. Contributions & Acknowledgements

7.1. Individual Contributions

Matt: Led the initial research phase, conducting com-
prehensive literature review and establishing the project
framework. Identified and integrated Google’s MediaPipe
framework for hand landmark detection. Developed the
foundational LandmarkGesture class and implemented
the baseline MLP architectures (small and large variants).
Contributed to experimental design and dataset collection
protocols.

Chris: Designed and implemented all temporal model-
ing architectures including GRU, LSTM, TCN, and Trans-
former networks. Developed the sequence processing
pipeline and LandmarkSequenceDataset class for
temporal data handling. Conducted the majority of compar-
ative experiments across all model architectures, including
hyperparameter tuning, training curve analysis, and com-
prehensive performance evaluation. Implemented the en-
hanced training script with learning rate scheduling and
early stopping mechanisms.

Carlos: Architected and implemented the complete end-
to-end system integration from gesture recognition to drone
control. Developed the radio communication interface us-
ing the Crazyflie Python library and established the real-
time control pipeline. Integrated the best-performing mod-
els into the live gesture recognition system and conducted
hardware testing with the Crazyflie 2.1+ platform. Imple-
mented the command mapping and flight control protocols.

Collaborative Contributions: All team members par-
ticipated in gesture dataset collection, recording multiple
sessions across varied lighting conditions and backgrounds
to ensure robust model training. Each member contributed
to the final paper writing, with collaborative editing of all
sections. All members participated in poster design and pre-
sentation preparation.

8



7.2. Code and Library Acknowledgements

This project builds upon several open-source libraries
and frameworks:

• MediaPipe [15]: Hand landmark detection and
tracking (https://github.com/google/
mediapipe)

• PyTorch [12]: Deep learning framework for all neural
network implementations

• Crazyflie Python Library [1]: Drone commu-
nication and control (https://github.com/
bitcraze/crazyflie-lib-python)

• scikit-learn [13]: Machine learning utilities and eval-
uation metrics

References
[1] B. AB. Crazyflie python library. https://github.

com/bitcraze/crazyflie-lib-python, 2021.
Accessed: 2024-12-17.

[2] S. Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation
of generic convolutional and recurrent networks for sequence
modeling. arXiv preprint arXiv:1803.01271, 2018.

[3] G. Bertasius, H. Wang, and L. Torresani. Is space-time atten-
tion all you need for video understanding? In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 5643–5653, 2021.

[4] J. Carreira and A. Zisserman. Quo vadis, action recognition?
a new model and the kinetics dataset. In proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 6299–6308, 2017.

[5] J. R. Cauchard, J. L. E, K. Y. Zhai, and J. A. Landay. Drone
& me: an exploration into natural human-drone interaction.
In Proceedings of the 2015 ACM International Joint Confer-
ence on Pervasive and Ubiquitous Computing, pages 361–
365, 2015.

[6] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase
representations using rnn encoder-decoder for statistical ma-
chine translation. arXiv preprint arXiv:1406.1078, 2014.

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[8] J. Huang, W. Zhou, H. Li, and W. Li. Attention-based 3d-
cnns for large-vocabulary sign language recognition. IEEE
Transactions on Circuits and Systems for Video Technology,
29(9):2822–2832, 2018.

[9] C. Lugaresi, J. Tang, H. N. C. McClanahan, and E. Uboweja.
Mediapipe: A framework for building perception pipelines.
arXiv preprint arXiv:2006.10214, 2020.

[10] P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, and
J. Kautz. Online detection and classification of dynamic hand
gestures with recurrent 3d convolutional neural network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4207–4215, 2015.

[11] M. Oudah, A. Al-Naji, and J. Chahl. Hand gesture recogni-
tion based on computer vision: a review of techniques. Jour-
nal of Imaging, 6(8):73, 2020.

[12] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
et al. Pytorch: An imperative style, high-performance deep
learning library, 2019.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, et al. Scikit-learn: Machine learning in
python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[14] S. S. Rautaray and A. Agrawal. Vision based hand gesture
recognition for human computer interaction: a survey. Arti-
ficial intelligence review, 43(1):1–54, 2015.

[15] F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka,
G. Sung, C.-L. Chang, and M. Grundmann. Mediapipe: A
framework for building perception pipelines, 2019.

9

https://github.com/google/mediapipe
https://github.com/google/mediapipe
https://github.com/bitcraze/crazyflie-lib-python
https://github.com/bitcraze/crazyflie-lib-python
https://github.com/bitcraze/crazyflie-lib-python
https://github.com/bitcraze/crazyflie-lib-python

